

Agenda

Colorado Environmental Flow Tool

- What it is/is not
- Overview and Data Inputs
- Output Summaries
- Results
- Next Steps

Colorado Environmental Flow Tool

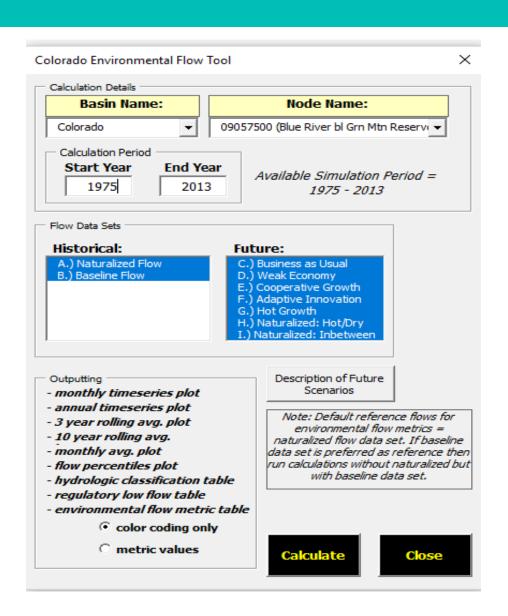
What it is

High-level tool that:

- Builds on previous efforts Watershed Flow Evaluation Tool (WFET)
- Post-processes DSS projections to provide summaries of changes in monthly flow regime at pre-selected locations under different planning horizons
- Identifies potential risks through flow-ecology calculation projections
- Serves as a complementary tool to the DSS to refine, categorize, and prioritize projects
- Provides guidance during Stream Management Plan development and BIP development

Colorado Environmental Flow Tool

What it is not

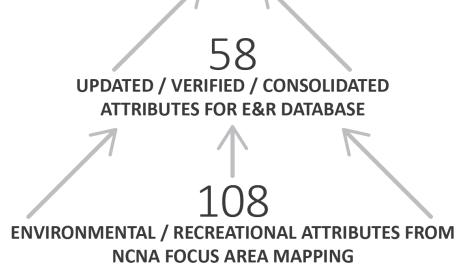

The Tool is <u>NOT</u> Prescriptive

- Does not designate any gap values
- Does not provide the basis for any regulatory actions
- Does not identify areas where ecological change may be associated with factors other than streamflow
- Does not provide results as detailed or as accurate as a site-specific analysis

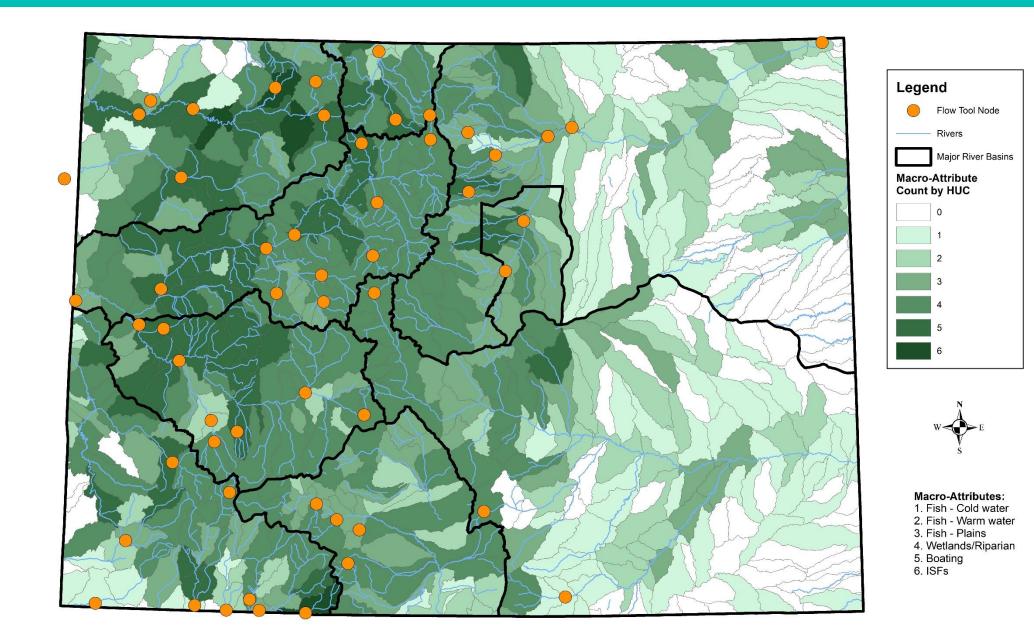
Colorado Environmental Flow Tool - Overview

Software Overview

- Visual Basic for Applications, Excel workbook
- User-friendly, form-based interface functionality
- User-defined node, scenario(s), and calculation period



Colorado Environmental Flow Tool— Data Inputs


Flow Tool Nodes:

- Presence of E&R Attributes
- Spatial consideration by basin
- Data Availability (completeness, period of record)

MACRO-ATTRIBUTE CATEGORIES Coldwater Fish Warmwater Fish Wetlands Boating Instream Flows

Colorado Environmental Flow Tool- Data Inputs

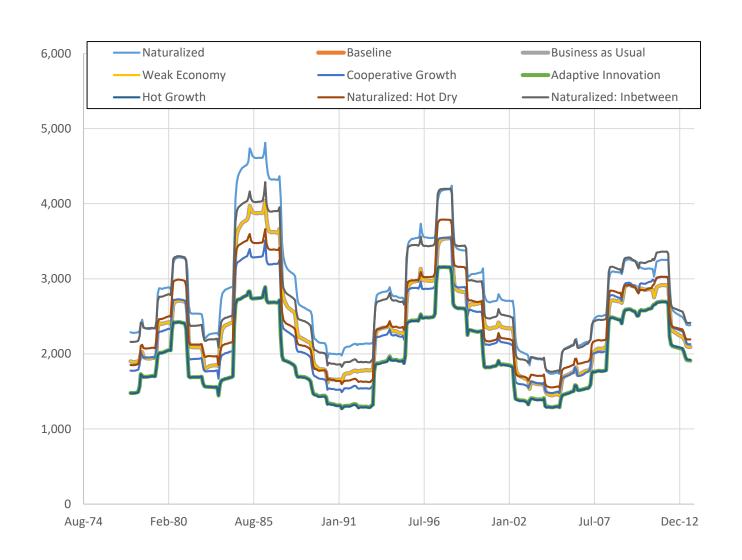
Colorado Environmental Flow Tool— Data Inputs

Flow Data:

- CDSS Monthly time-step
- Includes baseline, naturalized, and the modeled data for the 5 planning scenarios* (from the Colorado Water Plan)
- Also includes naturalized with climate change factors (in-between and hot/dry)

C Cooperative **D** Adaptive A Business as B Weak Economy E Hot Growth Drivers Growth Innovation A. Economy/ Population B. Urban Land use 曲曲曲曲 由由由由 Lower density C. Climate Status/ Water Supply 1/// Same as 20th Between hot and dry and Hot and dry Hot and dry century observed D. Energy Water Low (no oil shale) Low (no oil shale High (oil shale) Conditions Total ag water demands Total ag water Total ag water demands slightly higher demands higher slightly higher demands decrease slightly higher · Decrease in irrigated · Decrease in irrigated · Slight decrease in irrigated · Slight decrease in · Significant decrease in acres due to urbanization acres due to urbanization irrigated acres due irrigated acres due to acres due to urbanization · Ag exports and demands · Ag exports and demands · Ag exports down and local to urbanization urbanization constant demands up Ag exports down and · Ag exports and · Ag is less able to · Ag is less able to · Ag is better able to local demands up demands high compete with urban compete with urban compete with urban areas Ag is better able to · Ag is better able to areas for water areas for water for water compete with urban compete with urban areas for water · Increased ET due to areas for water Increased ET due to climate change Increased ET due to climate change climate change F. Availability of New Water Efficiency M&I High · M&I High M&I Moderate M&I Moderate · M&I Moderate Technology · Ag: Efficiencies · Ag: Much higher · Ag: Efficiencies • Ag: Efficiencies · Ag: Efficiencies are increased efficiencies are increased are increased are increased are implimented G. Social/ Environmental Values No change No change Increased awareness Increased awareness · Full use of resources · Increased willingness to · Increased willingness to · Low willingness to protect environment and protect environment and protect environment and stream recreation stream recreation stream recreation H. Regulatory Regulation 6 Constraints No change No change Increased Increased but expedited I. M&I Water Demands Lowest of the five scenarios Middle of the five scenarios Second lowest of the Second highest of the Highest of the five scnarios five scenarios five scenairos

^{*}Arkansas and Rio basins do not have models


Colorado Environmental Flow Tool— Data Inputs

Flow-Ecology Relationships:

- Drawn from the Watershed Flow Evaluation Tool reports (developed in SWSI 2010), the Nonconsumptive Toolbox, and the Nonconsumptive sections of the Water Plan.
- Relationships reviewed and refined with TNC for Coldwater/Warmwater/Plains Fish,
 Riparian, Instream Flow Rights, and Boating (recreational in-channel diversions).
- Relationships include risk classes based on percent change to key metrics.

Flow Statistics

- Monthly and annual timeseries
- 3 and 10-year rolling average timeseries
- Monthly means
- Monthly flow percentile plots

Hydrologic Classification Table

Annual Flow Percentile (upper limit)	Hydrologic Category					
5 th	Drought					
24 th	Dry					
75 th	Average					
94 th	Wet					
100 th	Flood					

Number of Modeled Years Falling into Each Category:

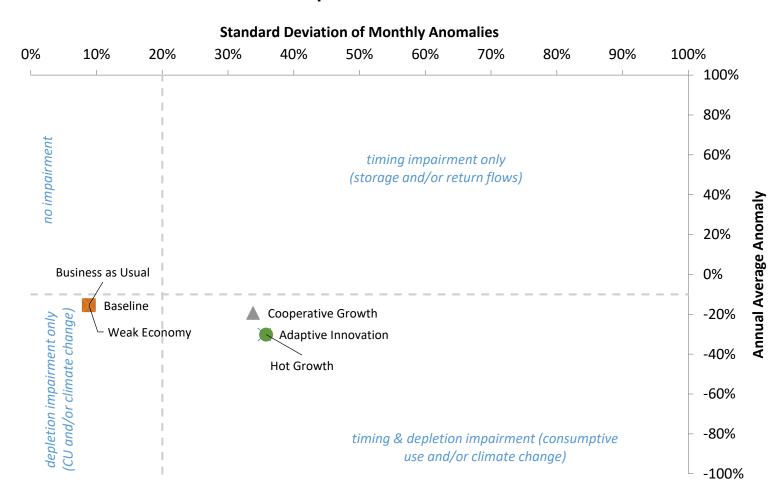
Percentile (max)		Hydrologic Classification	Naturalized	Gaged	Baseline	Scenario 1: Business as Usual		Scenario 3: Cooperative Growth	Adaptive	Scenario 5: Hot Growth
0.05	14,079	Drought	2		4	4	4	4	5	5
0.24	25,077	Dry	8		13	13	13	13	19	19
0.75	42,274	Average	19		17	17	17	18	13	13
0.94	51,410	Wet	7		4	4	4	3	2	2
1.00	71,226	Flood	3		1	1	1	1	0	0

Baseline:

	Annual Flow	Hydrologic
Modeled Water Year	(AFY)	Classification
1975	32,685	Average
1976	21,998	Dry
1977	13,704	Drought
1978	34,176	Average
1979	38,521	Average
1980	24,728	Dry
1981	11,943	Drought
1982	29,044	Average
1983	43,797	Wet
1984	59,808	Flood
1985	35,865	Average
1986	34,804	Average
1987	25,151	Average
1988	19,703	Dry
1989	20,749	Dry
1990	19,288	Dry
1991	22,583	Dry
1992	22,175	Dry
1993	39,136	Average
1994	21,592	Dry
1995	45,146	Wet
1996	40,594	Average
1997	40,918	Average
1998	21,104	Dry
1999	33,774	Average
2000	29,422	Average
2001	21,465	Dry
2002	10,741	Drought
2003	25,630	Average
2004	15,820	Dry
2005	20,094	Dry
2006	26,748	Average
2007	27,402	Average
2008	43,518	Wet
2009	34,154	Average

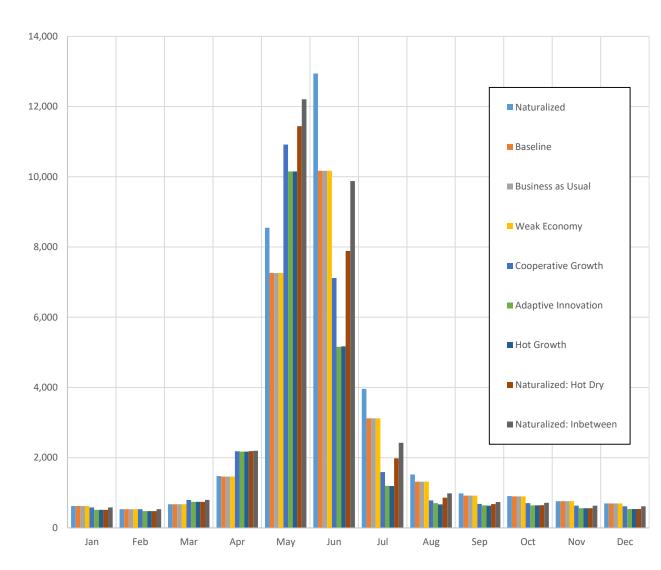
Statistical Low Flow Table

Flow Metric	Naturalized	Baseline	Scenario 1: Business as Usual	Scenario 2: Weak Economy	Scenario 3: Cooperative Growth	Scenario 4: Adaptive Innovation	Scenario 5: Hot Growth	Naturalized HotDry	Naturalized Inbetween
2-yr, Annual Low Flow (AFM)	522	521	521	521	497	438	437	437	498
5-yr, Annual Low Flow (AFM)	426	425	425	425	403	360	360	358	402
10-yr, Annual Low Flow (AFM)	378	379	379	379	357	323	323	322	356
25-yr, Annual Low Flow (AFM)	331	332	332	332	311	286	286	287	311
50-yr, Annual Low Flow (AFM)	303	303	303	303	283	264	264	266	284
100-yr, Annual Low Flow (AFM)	279	279	279	279	260	245	246	249	262


Environmental Flow Analysis

			Scenario 1: Business as	Scenario 2: Weak		Scenario 4: Adaptive	Scenario 5: Hot		Naturalized
Flow Metric	Naturalized	Baseline	Usual	Economy	Growth	Innovation	Growth	HotDry	Inbetween
Cold Water Fish Baseflow Fraction: Aug, Sep									
Change in Plains Fish Baseflow Fraction: Jul, Aug									
Change in Peak Flow, for Wetland Plants									
Change in Max Sucker Biomass									
Change in Peak Flow, for Warmwater Fish									
Change in Average Annual Flow									
Change in Average Winter Flow									
Change in Average Late Summer Flow									
Change in Average January Flow	0%	0%	6 0%	6 0%	-7%	-18%	-18%	-18%	-7%
Change in Average February Flow	0%	0%	6 0%	6 0%	0%	-11%	-11%	-11%	0%
Change in Average March Flow	0%	0%	6 0%	6 0%	18%	11%	119	11%	18%
Change in Average April Flow	0%	-1%	-1%	-1%	48%	47%	47%	48%	49%
Change in Average May Flow	0%	-15%	-15%	-15%	28%	19%	19%	34%	43%
Change in Average June Flow	0%	-21%	-21%	-21%	-45%	-60%	-60%	-39%	-24%
Change in Average July Flow	0%	-21%	-21%	-21%	-60%	-70%	-70%	-50%	-39%
Change in Average August Flow	0%	-13%	-13%	-13%	-49%	-54%	-56%	-43%	-36%
Change in Average September Flow	0%	-6%	-6%	-6%	-31%	-35%	-36%	-31%	-25%
Change in Average October Flow	0%	-1%	-1%	-1%	-22%	-29%	-29%	-28%	-21%
Change in Average November Flow	0%	0%	6 0%	6 0%	-17%	-27%	-27%	-27%	-17%
Change in Average December Flow	0%	0%	6 0%	0%	-11%	-23%	-23%	-23%	-11%

Impairment Anomolies Chart


Impairment Anomalies

Colorado Environmental Flow Tool – Results

Summary of Results:

- Climate change impacts on stream flow will drive risk to E&R attributes
- Future stream flow hydrographs could reflect
 - Earlier peaks
 - Drier conditions in late summer
- Earlier peak runoff might not match species' needs
- Drier late summer conditions could raise water temperatures and reduce habitat

Flow Tool – Results

Summary of Results:

- Mountain streams with no infrastructure may have low to moderate risk but increasing risk to riparian plants and fish
 - Risk could increase with climate change
- Mountain streams with infrastructure could see varying risks
 - Depleted streams may see increased risks from lower flows
 - Some streams may be sustained by reservoir releases
- Instream Flow and Recreational In-Channel Diversion water rights may be met less often with climate change

TEHCNICAL UPDATE / E&R FINDING

Projected future streamflow hydrographs in most locations across the state show potentially drier conditions in the late summer months under scenarios with climate change that suggest air temperatures could increase by 3.78° ft os.4.15° by 2050.

Instream Flow (ISF) and recreational in-channel diversions (RICD) water rights may be met less often in climate-impacted scenarios that see more consistent temperature increases and more variable precipitation and runoff conditions.

† 1 MONTH

Peak runoff may shift as much as one month earlier, leading to drier conditions in summer months and has multiple implications for storage, irrigation and streamflow.

Under climate change scenarios, runoff and peak flows may occur earlier, resulting in possible mismatches between peak flow timing and species' needs. Drier conditions in late summer months could increase risk to coldwater and warmwater fish due to higher water temperatures and reduced habitat.

In mountainous regions with infrastructure, risks to E&R assets may vary. Streams that are already depleted may see increased risks in scenarios with climate change. However, some streams may be sustained by reservoir releases, which will help moderate risks in scenarios with climate change.

The Flow Tool created as part of the Technical Update was designed to compare modeling outputs from the five planning scenarios against baseline (existing) and naturalized (unimpaired) flow conditions. Key outputs include a comparison of monthly flow regimes relative to ecological-flow indicators, building off past stakeholder-driven efforts in Colorado.

Next Steps

Identify how data and tools from the Technical Update can best integrate into basin planning and, ultimately the update of the Colorado Water Plan.

2019 2018-2021 2019-2022

